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Propuesta General de Solución: Optimización del Diseño del Puesto de Trabajo Basada en 

datos en tiempo real bajo la filosofía I3oT y Continuous Twins. 

 

 

1.-Factorías en la cuarta revolución industrial. Bienvenidos a ”la Jungla” 

La gobernanza de las factorías, como pueden ser las factorías del sector de automoción, son 

extremadamente complejas. Utilizan miles y miles de robots, pinzas, cilindros, cintas 

transportadoras, etc., cada una con sus componentes, motores eléctricos, engranajes, cadenas, 

y cada una aplicada a diferentes procesos, como soldadura, estampación, pintura, etc. Además, 

toda esta maquinaria interactúa con los operarios que intervienen en diferentes fases del 

proceso como por ejemplo, ensamblando componentes, verificando la calidad de las piezas, y, 

en algunos casos, con la capacidad de modificar parámetros de las máquinas para garantizar la 

productividad y calidad de las piezas. El objetivo de la automatización no es otro que tratar de 

eliminar la dependencia de ese factor humano. Sin embargo, las máquinas no son capaces de 

adaptarse a situaciones de planta, lo que pone en duda si una automatización completa de una 

factoría sin la presencia humana sería la más eficiente. Así pues, que los operarios puedan 

modificar ciertos parámetros de las máquinas responde a una realidad en los procesos de 

fabricación y no es otra que la variabilidad. Esta variabilidad puede venir desde diferentes 

fuentes, como por ejemplo que dos máquinas iguales en realidad se comporten de manera 

diferente, desconocimiento en profundidad del proceso, tecnologías de diferentes generaciones 

conviviendo en la misma máquina y también en las líneas de montaje, la intervención humana 

en el proceso de ensamblado. 

En la fábrica de Ford Valencia, la producción diaria es de unas 2.000 unidades. Cualquier retraso 

en el ensamblado o fallo de calidad que genere retrabajos o chatarra, puede generar grandes 

pérdidas, ya que incrementa directamente el coste de fabricación del producto. Esto genera un 

importante nivel de presión tanto a los gerentes como al resto de personal de planta ya que, una 

mala gestión que genere pérdidas puede tener consecuencias. Por todo lo anterior, los 

empleados llaman a la fábrica con el sobrenombre de ”la jungla”. 

1.1 Línea de montaje 

Una línea de montaje es un sistema de producción en el que un producto se mueve 

secuencialmente a través de estaciones de trabajo, donde cada operario o máquina realiza una 

tarea específica para añadir o ensamblar componentes, completando el producto final de 

manera rápida, eficiente y económica. Es un método clave para la producción en masa, 
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caracterizado por la división del trabajo y la especialización de tareas para maximizar la velocidad 

y la uniformidad del producto. 

Características clave de una línea de montaje: 

• Movimiento secuencial: El producto sin terminar se desplaza de forma continua de una 

estación de trabajo a otra.   

• Tareas específicas y repetitivas: Cada estación de trabajo se especializa en una tarea 

simple y repetitiva, lo que aumenta la eficiencia.  

• División del trabajo: El proceso de fabricación se divide en múltiples fases, cada una 

realizada por un operario o máquina distinto.  

• Producción en masa: Es el método más eficaz para producir grandes cantidades de un 

mismo producto.  

• Mayor velocidad y eficiencia: La especialización y la repetitividad de las tareas permiten 

fabricar productos más rápido.  

• Reducción de costos: Al ser más eficiente, se reducen los costos de producción, lo que 

se refleja en un precio más bajo para el consumidor. 

En la literatura existen multitud de algoritmos para la optimización de líneas de montaje, así 

como de líneas de fabricación en general. A este problema se le conoce como ALBP (Assembly 

Line Balancing Problem), ver [1]. Estos algoritmos se utilizan de manera masiva en el diseño de 

las líneas, pero, ¿Qué pasa después? Pues después, una vez instalada la línea y puesta en marcha, 

el problema de su gobernanza pasa a manos de los gerentes y los empleados de la fábrica, 

generando multitud de nuevos problemas como el propuesto en este trabajo de investigación, 

que no es otro que el rebalanceo de las líneas de montaje (Optimización del Layout) bajo 

condiciones de fabricación. 

1.2 IoT,IIoT,I3oT 

El Internet de las Cosas (IoT) es una red de objetos físicos con sensores, software y otras 

tecnologías integradas que se conectan e intercambian datos a través de internet u otras redes 

de comunicación. Estos dispositivos "inteligentes" abarcan desde artículos domésticos 

cotidianos como termostatos inteligentes, móviles, wereables, etc, y donde la tendencia es a 

incrementar exponencialmente su uso en la sociedad. A nivel industrial, el concepto IoT se 

traduce al IIoT (Internet de las Cosas Industrial). Este se utiliza en entornos industriales para 

recopilar, analizar y compartir datos en tiempo real, lo que permite mejorar la eficiencia, la 

productividad y la automatización. Se diferencia del Internet de las Cosas (IoT), orientado al 

consumidor, al centrarse en los procesos industriales y emplear tecnologías como la IA, el 

aprendizaje automático y la computación en la nube para optimizar las operaciones y generar 

beneficios económicos. El principal problema del IIoT es que necesita instalar sensores y extraer 

la información. Para facilitar la instalación, el mercado ofrece sensores que incluyen baterías 

(para evitar la conexión a la red eléctrica de la factoría) y con comunicación 5G para extraer el 

dato sin necesidad de utilizar la red industrial, utilizada para el funcionamiento de la factoría. 

Esto hace que el coste de estos dispositivos sea muy elevado y no se implemente masivamente 

a todas las máquinas y componentes que existen en una industria. Esta falta de datos está 

ralentizando la implementación de tecnologías de la Industria 4.0 como Digital twins, machine 

learning, computación en la nube, etc y retrasando la tan ansiada llegada de la Industria 5.0, 

donde aparecen tecnologías como la IA. 
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En nuestros trabajos anteriores, ver [2]  se propone un nuevo concepto, el I3oT (Industrializable 

Industrial Internet of Things). La idea de este nuevo concepto es utilizar la instalación disponible 

en las factorías para desarrollar las aplicaciones IIoT a partir de ellas. Las máquinas instaladas en 

la industria funcionan de manera automática y disponen de sensores que permiten que las 

máquinas/líneas funcionen de manera automática. Además, las factorías disponen de una red 

IT/OT donde se comunican las máquinas y se gestiona la eficiencia de las líneas. Bajo este 

paradigma, las aplicaciones I3oT serian fácilmente extrapolables y escalables al resto de sistemas 

con un coste y consumo energético muy bajo, permitiendo el asentamiento definitivo de la 

Industria 4.0 y sus tecnologías en la industria, así como la reducción del consumo energético y la 

huella de carbono de las aplicaciones. 

1.2.1Aplicaciones I3oT desarrolladas susceptibles de ser usadas. 

1.2.1.1 Gestión de la información: CrossPLC: 

En uno de nuestros recientes trabajos, ver [3], se desarrolla una herramienta I3oT 

multiplataforma que permita la extracción eficiente de la información de los sensores existentes, 

conocida como CrossPLC. Esta herramienta actúa de manera pasiva, es decir, los PLC,s o PC's 

industriales envían la información a través de la red IT (red industrial) si y solo si, el parámetro 

ha cambiado. CrossPLC actualiza el valor de esa variable en su base de datos. Las aplicaciones 

I3oT, alojadas en la red OT acceden a esta base de datos para la ejecución de sus funciones. Esta 

herramienta permite la extracción de la información de una manera eficiente, usando la red IT 

existente y sin colapsar las comunicaciones de la factoría. 

1.2.1.2 Sistema de predicción de averías de componentes y máquinas (Miniterms) 

En otro de nuestros trabajos anteriores, ver [4], se utiliza la filosofía I3oT para desarrollar una 

herramienta de predicción de fallos en componentes de máquinas. Mediante el uso los sensores 

ya instalados en las líneas de fabricación, se mide el tiempo que les cuesta a los componentes 

de las líneas en hacer su tarea. Estos tiempos se envían a través del CrossPLC y son analizados 

en servidores instalados en la red OT. Cuando estos tiempos sufren un aumento significativo, es 

indicador de que el fin de la vida útil del elemento se acerca. 

1.3 The twin continuum. From Virtual to Digital twin 

El gemelo digital es una tecnología con muchas aplicaciones en la cuarta revolución (Industria 

4.0). En general, se trata de disponer de manera virtual de una réplica del proceso o máquina y 

usar esta para mejorarlo, [7]. Gemelo digital y Gemelo virtual son dos conceptos diferentes. Estos 

dos conceptos se pueden definir como: 

• Virtual Twins: Están fundamentados básicamente en la física conocida y su simulación 

mediante software a través de métodos numéricos. Suelen tener sistemas complejos y 

un coste muy alto en recursos, incluido el tiempo de cómputo. Los resultados obtenidos 

tienen variabilidad e incertidumbre con el proceso real. 

• Digital Twins: Están fundamentados en los datos y no en la física. Al estar basado 

exclusivamente en datos, su funcionamiento es difícilmente explicable y por tanto 

certificable. Suelen utilizar técnicas de machine learning para aprender un modelo. Su 

principal problema es que dependen de los datos y necesitan gran cantidad de estos 

para poder estimar comportamientos adecuados. Desafortunadamente los datos en la 

industria son altamente costosos. ¿Que datos coger?, ¿dónde están?, y cuando y como 

cogerlos son preguntas a resolver en estos casos. El modelo obtenido es útil dentro del 
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rango de datos entrenado, pero extrapolar y trabajar fuera del puede no dar los 

resultados esperados, es arriesgado. 

Entre estos dos extremos, existen puntos intermedios que tratan de resolver los problemas del 

digital o virtual twin, y es lo que se conoce como “twin continuum”. Los puntos intermedios se 

pueden dividir en dos grandes bloques, estos son: 

• Physics informed learning: Utiliza PINNs (Physics-informed neural networks), que son un 

tipo de aproximadores donde se puede incluir cualquier ley f´ısica que pueda ser 

definida como una PDE (Partial Diferential Equation) y que gobierne el proceso de 

aprendizaje. Este tipo de redes, al contener la f´ısica no necesitan tantos datos como el 

Digital Twin y su funcionamiento es explicable, ya que contiene la f´ısica. 

• Physics augmented learning: En este caso, la idea consiste en tratar de aprender la 

discrepancia existente entre el virtual twin y el mundo real. A este Gap se le duele llamar 

“ignorancia” ya que, como en el digital twin no es explicable. Se suelen utilizar técnicas 

de Machine learning para su aprendizaje. Suele necesitar menos datos ya que solo se 

pretende aproximar la discrepancia. 

2.- Visión General de la propuesta 

Esta propuesta articula un sistema integral para la optimización estratégica del diseño de 

estaciones de trabajo en líneas de ensamblaje existentes. El sistema se basa en la captura 

detallada de datos en tiempo real, a ser posible bajo la filosofía I3oT, de la posición en tiempo 

real y las acciones del operario y el desarrollo de un Continuous twin para modelar y validar 

configuraciones de la estación de trabajo y emplea una estrategia de optimización híbrida 

(Algoritmos Genéticos para la búsqueda de configuraciones y Aprendizaje por Refuerzo Profundo 

para la evaluación realista en simulación) para encontrar el diseño más eficiente. El presente 

documento se ha redactado pensando en que se dispone de la posición del operario en tiempo 

real y que los datos han sido generados mediante tracking por visión artificial generado por la 

empresa DOMOTIK. El objetivo es reducir desplazamientos innecesarios, minimizar tiempos de 

ciclo dentro de la estación y mejorar la ergonomía y la eficiencia operativa. 

 

2.1 Fase 1: Extracción y Procesamiento de Datos de Minitérminos Dinámicos 

En cambio, se recibe directamente de la línea de ensamblaje datos de alta precisión consistentes 
en coordenadas espaciales bidimensionales (x,y)(x,y) del coche y del operario, junto con su 
identificación y timestamp, capturando así en tiempo real: 

• La posición exacta del operario y del coche dentro del área de la estación. 
• El recorrido, desplazamientos y estancias que el operario realiza a lo largo del tiempo. 
• El lugar y momento preciso donde el operario realiza cada tarea sobre el coche. 

Objetivo: Realizar un procesamiento posterior (postprocesado) de estos datos de posición para: 

• Transformar coordenadas a la referencia espacial deseada. 
• Definir la cuadrícula espacial que segmenta el área intraestación en casillas discretas. 
• Extraer y estructurar los minitérminos, entendidos aquí como las unitarias acciones o 

movimientos del operario entre casillas de la cuadrícula, o la duración de estancias 

específicas dentro de casillas, que representan tareas o pausas. 
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• Asociar tiempos y desplazamientos a cada minitérmino observado. 

Componentes y Actividades Clave: 

Procesamiento de Visión por Computadora (CV): 

• Postprocesado de Posiciones y Tiempos: 

o Transformación de coordenadas (x,y)(x,y) del operario y coche a un sistema 

de referencia realista. 

o Segmentación en casillas discretas conformando una cuadrícula 

intraestación. 

o Identificación de desplazamientos (desplazamiento entre casillas 

consecutivas) y estancias (tiempo en una casilla sin desplazamiento). 

o Construcción de perfiles de minitérminos unión de estos desplazamientos y 

estancias temporales. 

 

• Identificación de Tareas vs. MinTérminos: 

o Enfoque simplificado y robusto: considerar directamente los 

desplazamientos y estancias como minitérminos, sin la necesidad de 

entrenar explícitamente modelos de reconocimiento de tareas. 

o Importancia creciente de diferenciar, si es relevante, qué tarea se realiza en 

cada estancia o desplazamiento, para entender el contexto operativo. 

o En caso de no poder identificar la tarea automáticamente, registrar la 

posición y duración para análisis y simulaciones posteriores. 

Componente Gráfico y Dashboard: 

• Se diseñará una interfaz gráfica de usuario tipo dashboard que permita la 
visualización en tiempo real y retroalimentación histórica de los datos extraídos. 

• Esta interfaz incluirá: 
• Mapas de calor dinámica que muestran la intensidad y frecuencia de 

movimientos dentro de la cuadrícula, destacando zonas de mayor actividad, 
fatigabilidad o posibles cuellos de botella espaciales. 

• Visualización de rutas típicas y trayectorias recorridas por los operarios, para 
identificar patrones recurrentes, ineficiencias o riesgos ergonómicos. 

• Estadísticas visuales y gráficos de series temporales para seguir la evolución de 
la duración y desplazamiento de cada minitérmino. 

• La importancia del dashboard radica en proporcionar a ingenieros, ergonomistas y 
responsables de producción una herramienta interactiva para: 

• Diagnosticar de forma visual y rápida las ineficiencias espaciales y temporales. 
• Validar y contextualizar la información obtenida del análisis automático. 
• Facilitar la toma de decisiones para optimizaciones posteriores (fase de 

simulación y optimización). 

Salida Esperada: 

• Base de datos estructurada con registros de minitérminos dinámicos: 
• Coordenadas, tiempos, desplazamientos. 
• Id. operario y coche. 
• Contexto o etiquetas de tarea si se pudiesen identificar. 
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• Visualizaciones gráficas (mapas de calor, rutas, histogramas) que apoyen la 
interpretación operativa y la mejora continua. 

• Infraestructura sólida para alimentar con precisión las fases posteriores de simulación y 
optimización. 

Tecnologías/Librerías Python: 

• OpenCV: Procesamiento de imágenes, calibración. 
• TensorFlow / PyTorch: Modelos de detección, seguimiento, pose y reconocimiento de 

actividad. 
• DB: Para almacenar los datos estructurados de minitérminos y patrones de movimiento. 

Datos de Entrada para el Rebalanceo en la Literatura 

1. Datos de la Línea de Montaje y Estaciones: 
1. Tipo de línea: Recta, en U o de dos lados (recta, en U, de dos lados). [9] 
2. Número de estaciones: Cantidad de estaciones de trabajo disponibles en la 

línea. [9] 
3. Configuración de líneas paralelas: En sistemas PAL (Parallel Assembly Lines), se 

considera la disposición de múltiples líneas en paralelo. [10] 
4. Estaciones comunes: Identificación de estaciones compartidas entre líneas 

paralelas. [10] 
2. Datos de Tareas: 

1. Lista de tareas: El conjunto de todas las operaciones que deben realizarse. [12] 
2. Relaciones de precedencia: El orden en que las tareas deben ejecutarse. [10,12] 
3. Tiempos de tarea: 

• Determinísticos: Tiempos fijos para cada tarea. [10] 
• Estocásticos/Inciertos: Tiempos de tarea modelados con una 

distribución de probabilidad o como un intervalo de valores. [13] Para 
el caso de incertidumbre, se usan el tiempo nominal y el límite superior 
del intervalo, así como la desviación máxima. [14] 

• Dinámicos: Tiempos de tarea que pueden cambiar con el tiempo debido 
a factores como el aprendizaje o la fatiga del trabajador. [14] 

• Dependientes del trabajador: El tiempo de ejecución de una tarea 
puede variar según el trabajador que la realice [11,12] 

3. Datos de Trabajadores: 
1. Número de trabajadores: Cantidad total de personal disponible. [10] 
2. Habilidades de los trabajadores (heterogeneidad): Considera que los 

trabajadores tienen diferentes capacidades y eficiencias para realizar tareas. 
[10,12,16] 

3. Curvas de aprendizaje y olvido (L&F): Modelan cómo la eficiencia del trabajador 
cambia con la experiencia y el tiempo. [9] 

4. Velocidad de caminata del trabajador: La velocidad a la que cada trabajador se 
desplaza físicamente. [15] 

5. Restricciones de asignación: Por ejemplo, un subconjunto de trabajadores que 
no pueden ser asignados a estaciones comunes. [10] 

4. Datos de Espacio y Movimiento (para "Walking Times"): 
1. Tiempos de caminata entre líneas adyacentes: El tiempo que un trabajador 

tarda en desplazarse entre diferentes líneas paralelas, especialmente en 
estaciones comunes. [12] 
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2. Distancia entre líneas adyacentes: Factor que influye en los tiempos de 
caminata. [14] 

 

Diferenciación de la Data del Estado del Arte para el Rebalanceo de Líneas (ALRBP): 

El problema que abordamos es el Rebalanceo de Líneas de Ensamblaje (ALRBP), lo que implica 

que estamos trabajando con líneas ya operativas que requieren ajustes dinámicos. La literatura 

existente sobre ALRBP, aunque reconoce la necesidad de dinamicidad, a menudo se basa en 

datos agregados, pre-definidos o modelados teóricamente (como tiempos de tarea estocásticos 

con distribuciones preestablecidas o modelos de fatiga y aprendizaje). Muy pocos estudios 

incorporan la riqueza de datos dinámicos y en tiempo real recopilados directamente del 

comportamiento del operario en el puesto de trabajo, como lo propone esta solución. 

Además, nuestra propuesta se diferencia sustancialmente al capturar y analizar en tiempo real 

los desplazamientos, movimientos y tiempos del operario dentro de una misma estación de 

trabajo, utilizando para ello una cuadrícula espacial que segmenta el área de operación en 

posiciones discretas. 

Esta focalización en el nivel intraestación permite medir con precisión los minitérminos, los 

cuales representan los desplazamientos microescalares y tareas elementales que el operario 

realiza durante un ciclo de producción. 

A diferencia de los enfoques tradicionales que manejan tiempos de caminata solo entre 

estaciones o líneas paralelas, en nuestro caso el análisis del walking time se refiere a los 

desplazamientos entre casillas dentro de la cuadrícula intraestación, proporcionando una 

granularidad y realismo significativo para la simulación y la optimización. 

Este enfoque es especialmente relevante porque estudios recientes (como Baykasoglu et al., 

2023) ya destacan la importancia de considerar tiempos y distancias de caminata en líneas 

paralelas o multi-linea, pero nuestra propuesta profundiza y complementa esta visión hacia el 

interior de la estación, facilitando la construcción de simulaciones más fidedignas y caminos de 

mejora concretos en ergonomía y eficiencia operativa a nivel micro. 

 

2.2 Fase 2: Plataforma de Simulación (Gemelo Digital de la estación de Trabajo) 

Esta fase establece un "gemelo digital" de la estación de trabajo piloto, que se utilizará como un 

entorno de laboratorio virtual para evaluar y validar teóricamente las configuraciones de diseño 

propuestas. 

Objetivo: Crear un modelo de simulación preciso y dinámico del puesto de trabajo que pueda 

replicar el comportamiento del operario y responder a la variabilidad de los minitérminos 

observados bajo diferentes configuraciones de layout. 

Componentes y Actividades Clave: 

1. Modelado del Puesto de Trabajo (Conceptualización basada en Redes de Petri): 

• Representación del Layer de Minitérminos: El núcleo del modelo del puesto de 

trabajo se construirá como una Red de Petri. 
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• Las transiciones de esta Red de Petri representarán directamente los 

minitérminos identificados y medidos en la Fase 1 (ej., "Tomar 

componente A", "Ensamblar pieza", "Moverse a zona de 

herramientas"). 

• Los lugares de la Red de Petri representarán los estados intermedios o 

las precondiciones/postcondiciones de estos minitérminos (ej., 

"Operario en posición inicial", "Herramienta en mano", "Pieza A lista 

para ensamblar"). 

• Los tokens representarán las entidades que fluyen a través del proceso 

(ej., la pieza en proceso, la atención del operario). 

• Configuración del Layout: El modelo de la Red de Petri será parametrizable para 

incorporar la disposición física de los elementos (herramientas, cestas, 

superficies de trabajo). La ubicación de estos elementos influirá directamente 

en los desplazamientos asociados a las transiciones (minitérminos). 

• Variabilidad de Minitérminos (Parametrización desde Fase 1): 

• El modelo de simulación utilizará las distribuciones de tiempo y 

desplazamiento (promedios, desviaciones estándar, o incluso 

distribuciones completas) obtenidas de la Fase 1 para asignar 

duraciones y distancias estocásticas a cada transición (minitérmino) de 

la Red de Petri. Esto asegura que el gemelo digital refleje la variabilidad 

observada en la operación real. 

2. Motor de Simulación (Implementación de la Red de Petri): 

• El motor de simulación (ej., basado en SimPy o código Python personalizado) 

actuará como un "ejecutor" de la Red de Petri que describe el puesto de trabajo. 

• Será capaz de simular el flujo de trabajo del operario a través del disparo de las 

transiciones (minitérminos) de la Red de Petri, respetando sus pre-condiciones 

y actualizando los tokens en los lugares. 

• Calcula los desplazamientos del operario: Para cada disparo de una transición 

(minitérmino), el simulador calculará los desplazamientos asociados en función 

de la posición de los elementos en el layout. Estos cálculos utilizarán los patrones 

de desplazamiento espacial obtenidos en la Fase 1 para cada mini-término. 

• Permite la inyección de la variabilidad de los minitérminos en las duraciones de 

las actividades (transiciones), utilizando las distribuciones derivadas de la Fase 

1. 

3. Métricas de Rendimiento: 

• Calcula métricas clave para evaluar el rendimiento de un diseño de puesto de 

trabajo propuesto: 

• Tiempo de Ciclo Promedio del Puesto: Tiempo total para que el 

operario complete su secuencia de tareas en la estación. 
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• Desplazamiento Total del Operario: Suma de las distancias recorridas 

por el operario (o sus manos) durante un ciclo de trabajo. 

• Eficiencia Ergonómica: (Opcional, pero valioso) Podría integrarse un 

modelo simplificado para estimar la tensión o el esfuerzo basado en los 

movimientos. 

• Utilización de Recursos: Tiempo activo vs. inactivo del operario. 

• Tiempos de Búsqueda/Acceso: Tiempo que el operario tarda en 

alcanzar herramientas o componentes. 

4. Capacidad de Evaluación de Layouts: 

• La simulación debe poder recibir una configuración de layout del puesto de 

trabajo como input y devolver sus métricas de rendimiento simuladas. 

Salida Esperada: 

• Gemelo Digital Funcional de la estación de Trabajo: Un modelo de simulación 

interactivo y configurable que puede simular el comportamiento del operario para 

cualquier diseño de puesto de trabajo. 

• Reportes de Rendimiento Simulados: Para cada configuración de layout del puesto 

evaluada, la simulación proporcionará un conjunto de métricas de rendimiento 

detalladas. 

Tecnologías/Librerías Python: (Tentativo) 

• SimPy: Librería principal para el motor DES. 

• Custom Python Code: Para implementar la lógica del puesto y las interacciones 

espaciales, siguiendo la estructura de lugares, transiciones y tokens de una Red de Petri, 

y utilizando los datos de la Fase 1 para parametrizar las transiciones. 

• (Opcional: Librerías específicas para Redes de Petri como SNAKES, si se desea una 

implementación más formal del modelo PN dentro del simulador, aunque SimPy permite 

construir la lógica de forma más flexible). 

Diferenciación de la Data y el Modelado frente al Estado del Arte: 

La literatura tradicional sobre simulación de puestos de trabajo y balanceo de líneas a menudo 

se basa en modelos con parámetros estáticos o distribuciones de probabilidad teóricas (ej., 

tiempos de tarea con distribuciones normales o uniformes predefinidas, tiempos de 

desplazamiento calculados con fórmulas simples) [7,8]. 

Nuestra aproximación se distingue por el uso de datos dinámicos de mini-términos (Fase 1) para 

nutrir el gemelo digital, lo que nos permite operar en un "Twin Continuum" más avanzado [7,8] 

• Modelado de la Variabilidad Basado en Observación Real: A diferencia de la 

parametrización teórica, nuestro gemelo digital se alimenta directamente de las 

distribuciones de tiempo y desplazamiento reales y observadas de los mini-términos. 

Esto permite que la simulación refleje con una fidelidad sin precedentes la variabilidad 

intrínseca del comportamiento humano y las condiciones operativas, incluyendo efectos 
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de fatiga, aprendizaje y micro-interrupciones, que son inherentemente dinámicos y 

difíciles de capturar con modelos fijos [15]. 

• Enfoque en el "Physics-augmented Learning" para el Gemelo Digital: Nuestro gemelo 

digital se alinea con el concepto de "Physics-augmented Learning". Si bien el modelo de 

Red de Petri proporciona una base "física" o de "reglas" claras (cómo fluyen las tareas, 

las precedencias), los datos dinámicos de la Fase 1 nos permiten: 

• Aprender la Discrepancia (Ignorancia): El gemelo digital, aunque formalmente 

estructurado (Red de Petri), utiliza datos empíricos para modelar la "ignorancia" 

o la discrepancia entre un modelo puramente teórico y el comportamiento real 

y variable del operario [15]. 

• Mejora Continua del Modelo: Los datos de mini-términos se pueden usar para 

calibrar y refinar continuamente los parámetros estocásticos del gemelo digital, 

haciendo que sus predicciones sean cada vez más precisas y representativas del 

mundo real. Esto es fundamental para la credibilidad de las optimizaciones 

futuras y para potenciar la confiabilidad de un sistema de optimización. 

 

2.3 Fase 3: Optimización Offline del Diseño del Puesto de Trabajo y Validación 

Esta fase utiliza algoritmos de optimización para explorar diferentes configuraciones de diseño 

del puesto de trabajo, evaluándolas rigurosamente con el gemelo digital (Fase 2) y seleccionando 

la más óptima para su aplicación en la línea existente. 

Objetivo: Encontrar la configuración física del puesto de trabajo (ubicación de cestas, 

herramientas, etc.) que optimice las métricas de rendimiento clave (ej., minimizar 

desplazamiento del operario, minimizar tiempo de ciclo), considerando la variabilidad dinámica 

de los minitérminos y el comportamiento adaptativo del operario. 

Componentes y Actividades Clave: 

1. Algoritmos Genéticos (AG) para la Búsqueda de Configuraciones de Puesto: 

• Propósito: El AG actúa como el motor de búsqueda y exploración para el vasto 

y complejo espacio de posibles diseños de puestos de trabajo. Dada la 

naturaleza combinatoria y a menudo no lineal de las relaciones entre la 

disposición de elementos y el rendimiento del operario, el AG es 

excepcionalmente adecuado para: 

• Explorar Múltiples Escenarios: Generar y evaluar un sinfín de 

combinaciones de ubicaciones de cestas, herramientas, y otros 

elementos dentro del puesto. Esto incluye explorar soluciones no 

intuitivas que podrían pasarse por alto en un diseño manual o con 

heurísticas simples. 

• Manejar la Alta Dimensionalidad: A medida que el número de 

elementos a posicionar y sus posibles coordenadas (X,Y) aumentan, el 

espacio de soluciones crece exponencialmente. El AG puede navegar 

eficientemente este espacio de alta dimensionalidad. 
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• Optimización Multi-Objetivo: Si se busca optimizar simultáneamente el 

tiempo de ciclo y el desplazamiento del operario (o incluso la 

ergonomía), los AG pueden encontrar un conjunto de soluciones de 

compromiso (frentes de Pareto). 

• Input: 

• Perfiles de Mini-Términos Dinámicos: El AG utiliza las características 

estadísticas y las distribuciones de probabilidad de los mini-términos 

(obtenidas de la Fase 1, que capturan su naturaleza dinámica y 

variabilidad) para parametrizar el gemelo digital (Fase 2). Esto asegura 

que cada diseño de puesto propuesto por el AG sea evaluado en la 

simulación bajo condiciones realistas de variabilidad, donde el DRL 

interactuará con esa dinámica. 

• Restricciones Físicas: Dimensiones del puesto, zonas de acceso, zonas 

prohibidas, alturas mínimas/máximas, etc. 

• Objetivos: Definir qué se busca optimizar (ej., minimizar tiempo de ciclo, 

minimizar desplazamientos, mejorar ergonomía). 

• Ejecución: El AG se ejecuta offline cuando se necesita optimizar el diseño de un 

puesto de trabajo. 

2. Rol del Aprendizaje por Refuerzo Profundo (DRL) en la Evaluación de Aptitud: 

• Propósito: El DRL se utiliza dentro del simulador (Fase 2) para realizar la 

evaluación de la función de aptitud del AG de la manera más realista y precisa 

posible. 

• Entrenamiento: Para cada configuración de puesto de trabajo propuesta por el 

AG, un agente DRL es entrenado en el simulador para aprender la política 

óptima de cómo el operario debería realizar la secuencia de mini-términos en 

ese layout específico. Esto incluiría aprender la secuencia de movimientos más 

eficiente, cómo manejar la variabilidad de los mini-términos, etc. 

• Evaluación: El rendimiento que el DRL logra en el simulador (ej., el mínimo 

desplazamiento total que puede lograr el operario, el tiempo de ciclo más 

rápido) se convierte en la métrica clave para evaluar la aptitud del diseño 

propuesto por el AG. Esto simula un comportamiento "óptimo" del operario bajo 

esa configuración del puesto. 

Salida Esperada: 

• Diseño de Puesto de Trabajo Óptimo: Un conjunto de recomendaciones validadas para 

la disposición física de elementos en un puesto de trabajo. 

• Reporte de Rendimiento Proyectado: Predicciones detalladas de cómo funcionará el 

puesto optimizado en la realidad (basado en el gemelo digital). 

• Mejora Continua del Proceso: Un sistema iterativo para la optimización y validación de 

diseños de puestos de trabajo individuales. 

Tecnologías/Librerías Python: 
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• AG: DEAP, PyGAD. 

• DRL: Stable Baselines3, Ray RLlib. 

• Herramientas de Visualización: Para analizar los resultados del AG y del simulador (ej., 

Matplotlib, Plotly, herramientas de visualización 3D para layouts). 

 

Alternativa: Optimización Directa con Aprendizaje por Refuerzo Profundo (DRL) 

En esta alternativa, el DRL asume el rol principal en la búsqueda y optimización de las 

configuraciones de diseño del puesto de trabajo. 

1. Agente DRL para Diseño de Puestos de Trabajo: 

• Agente: Se desarrolla un agente de Aprendizaje por Refuerzo Profundo (ej., 

utilizando algoritmos como PPO, SAC, o variantes adaptadas para espacios de 

acción discretos/combinatorios). Este agente será el encargado de aprender a 

generar y modificar diseños de puestos de trabajo. 

• Entorno de Entrenamiento: El simulador de la Fase 2 (Gemelo Digital del 

Puesto de Trabajo) se convierte en el entorno de aprendizaje para el agente 

DRL. Es aquí donde el agente interactúa, propone diseños y recibe feedback. 

• Estado (State): Una de las partes más críticas y desafiantes. El estado debe 

representar de manera efectiva la configuración actual del puesto de trabajo. 

Esto podría incluir: 

• Una representación espacial de la ubicación de todos los elementos 

(cestas, herramientas, superficies de trabajo). 

• La asignación de tareas al puesto y sus precedencias. 

• Métricas de rendimiento observadas hasta el momento en el diseño 

actual. 

• Perfiles de mini-términos relevantes para el puesto. 

• Esto a menudo requiere el uso de arquitecturas de redes neuronales 

avanzadas como Redes Neuronales de Grafos (GNNs) o 

representaciones basadas en cuadrículas/imágenes para capturar la 

estructura espacial y las relaciones entre los elementos. 

• Entrenamiento: El agente DRL interactúa con el simulador, tomando acciones 

que modifican el diseño del puesto. Después de cada acción (o una secuencia 

de ellas, que define un diseño completo), el simulador ejecuta una simulación 

del puesto, y el agente recibe una recompensa basada en el rendimiento 

simulado. A través de millones de estas interacciones, el agente aprende una 

política que lo lleva a generar diseños de puestos de trabajo que maximizan la 

recompensa acumulada. 

2. Desafíos de la Optimización Directa con DRL: 

• Diseño Complejo del Espacio de Estado y Acción: Representar eficazmente la 

geometría y las relaciones espaciales de un layout como un estado DRL y definir 
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acciones que permitan modificaciones de diseño significativas es un desafío de 

investigación activo y requiere una ingeniería de características considerable. 

• Recompensas Escasas y Retrasadas: La recompensa (el rendimiento general del 

puesto) solo se conoce después de una simulación completa del diseño 

propuesto, lo que dificulta significativamente el aprendizaje del agente. 

• Coste Computacional Elevado: El entrenamiento del agente DRL puede ser 

extremadamente intensivo en recursos computacionales, ya que cada acción o 

secuencia de acciones requiere una evaluación en el simulador, lo que puede 

llevar mucho tiempo. 

• Manejo de Restricciones Duras: Asegurar que el agente DRL genere 

diseños válidos y factibles (ej., no superponer objetos, mantener el acceso a 

herramientas) es difícil. A menudo se recurre a penalizaciones en la función de 

recompensa, pero esto puede ralentizar el aprendizaje o llevar a soluciones 

subóptimas. 

• Interpretabilidad: Entender por qué el agente DRL propone un diseño particular 

puede ser un desafío, lo que dificulta la validación por parte de los expertos 

humanos y la confianza en la solución. 

• Generalización: La capacidad del agente para optimizar diseños de puestos de 

trabajo que son significativamente diferentes de los que vio durante el 

entrenamiento es un reto clave. 

Salida Esperada: 

• Diseño de Puesto de Trabajo Óptimo: Un conjunto de recomendaciones validadas para 

la disposición física de elementos en un puesto de trabajo. 

• Reporte de Rendimiento Proyectado: Predicciones detalladas de cómo funcionará el 

puesto optimizado en la realidad (basado en el gemelo digital). 

• Mejora Continua del Proceso: Un sistema iterativo para la optimización y validación de 

diseños de puestos de trabajo individuales. 

Tecnologías/Librerías Python: 

• DRL: Stable Baselines3, Ray RLlib, PyTorch / TensorFlow. 

• Herramientas de Visualización: Para analizar los resultados del DRL y del simulador (ej., 

Matplotlib, Plotly, herramientas de visualización 3D para layouts). 

Diferenciación con el Estado del Arte en Optimización de Layouts y Rebalanceo: 

Históricamente, la optimización de layouts de puestos de trabajo y problemas similares de 

asignación ha recurrido ampliamente a metaheurísticas como los Algoritmos Genéticos (AG). 

Estos son ampliamente reconocidos por su efectividad en explorar espacios complejos de 

soluciones y manejar múltiples restricciones, siendo una opción robusta para la búsqueda de 

configuraciones óptimas [14,15,16,17]. 
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Más recientemente, el Aprendizaje por Refuerzo Profundo (DRL) ha emergido como una 

alternativa potente, especialmente para problemas dinámicos y secuenciales. Estudios recientes 

evidencian que las estrategias basadas en DRL pueden superar a los heurísticos convencionales, 

incluyendo AG, en productividad, reducción del tiempo de ciclo y mejor balance de cargas, sin 

necesidad de reentrenamiento constante para cada nueva condición [16]. 

Sin embargo, la aplicación directa y autónoma de DRL como optimizador offline de layouts 

presenta desafíos importantes: 

• La complejidad del espacio de diseño y la dificultad de representar el layout como estado 

para DRL, con un espacio de acciones extremadamente grande e intrincado [13]. 

• Elevados costos computacionales durante el entrenamiento, debido a la necesidad de 

simular exhaustivamente cada modificación de diseño propuesta [13]. 

• La dificultad en manejar restricciones duras para generar diseños válidos y factibles 

dentro del aprendizaje DRL [12]. 

Nuestra propuesta híbrida AG + DRL está diseñada para explotar las fortalezas de ambos 

métodos y mitigar sus limitaciones. Los AG funcionan como exploradores robustos de 

configuraciones posibles en un espacio combinatorio de alta dimensión, buscando soluciones 

óptimas y creativas [6]. Mientras tanto, el DRL se integra en el gemelo digital para evaluar con 

realismo la aptitud de cada diseño generado por el AG, aprendiendo la política óptima para 

operar cada layout considerando la variabilidad dinámica de los minitérminos observados 

[10,11]. 

Además, el DRL simula el comportamiento adaptativo del operario, capturando cómo un sistema 

inteligente reaccionaría ante cambios y condiciones reales, superando las limitaciones de las 

funciones de aptitud heurísticas tradicionales de los AG [12]. 

De este modo, la propuesta ofrece una solución más robusta y aplicable para la optimización 

offline del layout que cualquiera de los métodos por separado, con un balance entre exploración 

y evaluación dinámica [10,12]. 
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1.4 Esquema 
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